- Si dice grafo un insieme di nodi legati "a due a due" da archi direzionati (o no)
- I grafi sono strutture dati di fondamentale importanza in informatica
- · Vi sono centinaia di problemi computazionali ad essi legati
- · Qui parleremo di alcuni algoritmi elementari sui grafi
 - Soprattutto visita di grafi
- G=(V,E)
- V insieme dei nodi
- E insieme degli archi (u,v)
- Se G è direzionato l'arco (u,v) è uscente da u ed entrante in v
- Se (u,v) è in E, v è *adiacente* a u

Grafi non direzionati

G=(V,E)

- V insieme dei nodi
- E insieme degli archi
- E consiste di coppie non ordinate di nodi
- Self-loops non ammessi
- In (u,v) u e v sono sia entranti che uscenti
- Adiacenza è simmetrica

Grado di un nodo (caso non direzionato)

· Numero di archi entranti

Grado di un nodo (caso direzionato)

• Numero di archi entranti + numero di archi uscenti

Cammino (di lunghezza k) da u a v

• Sequenza $v_0, ..., v_k$ tale che $u=v_0$ e $v=v_k$

Il cammino **contiene** i vertici $v_0, ..., v_k$ e gli archi $(v_0, v_1), ..., (v_{k-1}, v_k)$

- Un nodo v è **raggiungibile** da u se esiste un cammino da u a v
- Il cammino è **semplice** se tutti i vertici in esso contenuti sono distinti

Cammino (di lunghezza k) da u a v

• Sequenza $v_0, ..., v_k$ tale che $u=v_0$ e $v=v_k$

Sottocammino: Sequenza di vertici di un cammino es: v_i, \ldots, v_j per $0 \leq i \leq j \leq k$

Ciclo: Cammino $v_0, ..., v_k$ in cui $v_0 = v_k$

• Il ciclo è semplice se tutti i suoi nodi sono distinti.

Un grafo senza cicli è detto aciclico.

- Grafo (non direzionato) **connesso**: ogni coppia di vertici è unita da un cammino.
- Componenti connesse: classi di equivalenza determinate dalla relazione "è raggiungibile da"

Componenti connesse: {1,2,3}, {3,6}, {4}

Un grafo non direzionato è connesso se ha 1 componente connessa

- Grafo (direzionato) **fortemente connesso**: per ogni coppia di vertici (**u**,**v**) esiste un cammino che unisce **u** a **v** e **v** a **u**.
- Componenti **fortemente** connesse: classi di equivalenza determinate dalla relazione "sono mutualmente raggiungibili"

Componenti fortemente connesse: {1,2,4,5}, {3}, {6}

- G'=(V',E') sottografo di G=(V,E) se V' sottoinsieme di V e E' sottoinsieme di E
- Un grafo (non direzionato) è completo se ogni coppia di vertici è adiacente

Rappresentare un grafo

Due modi fondamentali:

- Liste di adiacenza
 - Utile soprattutto per rappresentare grafi sparsi (con pochi archi)
 - Richiede O(max(|V|, |E|))=O(|V|+|E|) spazio
- Matrici di adiacenza
 - Richiede O(|V|²) spazio

Liste di adiacenza – Grafi non direzionati

- Array di |V| liste (una per ogni vertice)
- Adj[u] contiene (puntatori a) tutti i vertici v per i quali (u,v) è in E
- La somma delle lunghezze di tutte le liste è 2 E

Liste di adiacenza – Grafi direzionati

- Array di |V| liste (una per ogni vertice)
- Adj[u] contiene (puntatori a) tutti i vertici v per i quali (u,v) è in E
- In tal caso, la somma delle lunghezze di tutte le liste è | E |

Matrici di adiacenza

- A=[a_{ij}]
- a_{ii}=1 se (i,j) è un arco in E (0 altrimenti)

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	0	0	0	0	1

Ricerca in ampiezza (Breadth-First-Search)

- Dato un vertice s, "esploriamo" il grafo per scoprire ogni vertice v raggiungibile da s.
 - Calcola la distanza di ogni v da s.
 - L'algoritmo (implicitamente) produce un breadthfirst-tree (BFT)
 - Il campo predecessore fa riferimento proprio a tale albero.
 - Il cammino da s a v in BFT rappresenta il cammino più breve.
- Supporremo una rappresentazione tramite liste di adiacenza.

Ricerca in ampiezza -- Idee

- Inizialmente ogni nodo è colorato bianco
 Poi i nodi diventeranno grigi o neri.
- Un nodo è scoperto quando è visitato la prima volta.
 - Diventa non-bianco
 - Nodi grigi: possono essere adiacenti (anche) a nodi bianchi.
 - Rappresentano la frontiera tra ciò che è già stato scoperto e ciò che non lo è ancora.
 - Nodi neri: possono essere adiacenti solo a nodi non bianchi.

Ricerca in ampiezza

BFS(G,s)

12.

13.

14.

- 1. for each vertex u in $V[G] \{s\}$
- 2. color[u]=*white*;
- 3. d[u]=MAX;
- 4. pred [u]=NULL;
- 5. color[s]=gray;
- 6. d[s]=0; pred[u]=NULL;
- 7. **Q.Enqueue(s);**
- 8. while (Q.NotEmpty())
- 9. u=Q.Dequeue();
- 10. for each v in Adj[u]
- if (color[v] == white)
 - color[v]=gray;
 - d[v]=d[u] + 1; pred[v]=u; Q.Enqueue(v);

15. color[u] = black;

Ricerca in ampiezza

BFS(G,s)

12.

13.

14.

- 1. for each vertex u in $V[G] \{s\}$
- ^{2.} color[u]=*white*;
- 3. d[u]=MAX;
- 4. pred [u]=NULL;
- 5. color[s]=gray;
- 6. d[s]=0; pred[u]=NULL;
- 7. Q.Enqueue(s);
- 8. while (Q.NotEmpty())
- 9. u=Q.Dequeue();
- 10. for each v in Adj[u]
- if (color[v] == white)
 - color[v]=gray;
 - d[v]=d[u] + 1; pred[v]=u; Q.Enqueue(v);

15. color[u] = black;

Ricerca in ampiezza

BFS(G,s)

- 1. for each vertex u in $V[G] \{s\}$
- ^{2.} color[u]=*white*;
- 3. d[u]=MAX;
- 4. pred[u]=NULL;
- 5. color[s]=gray;
- 6. d[s]=0; pred[u]=NULL;
- 7. **Q.Enqueue(s);**
- 8. while (Q.NotEmpty())
- 9. u=Q.Dequeue();
- 10. for each v in Adj[u]
- if (color[v]==white)
- 12. $\operatorname{color}[v] = \operatorname{gray};$
- d[v]=d[u] + 1; pred[v]=u;
- Q.Enqueue(v);

```
15. \operatorname{color}[u] = black;
```

Complessità: O(n+m)

Breadth-first Trees

- La procedura BFS(G,s) costruisce un albero (grafo dei predecessori G_p)
 - Ad ogni nodo è associato un predecessore
- V_p={v in V : p[v]≠NULL}
- E_p={(p[v],v) in E : v in V_p, v≠s}
- $G_p e$ un albero in cui
 - C'è un unico cammino da s a v (in V_p) che è anche il cammino più breve
 - Gli archi in E_p sono chiamati **tree-edges**.

Print-Path

• Supponiamo di aver già eseguito BFS(G,s)

Print-Path(G,s,v)
1. if (v==s) print s
2. else if pred[v]==NULL
3. print "No path from s to v"
4. else Print-Path(G,s,pred[v])

5. print v

Ricerca in Profondità: DFS

- Il grafo viene visitato in profondità piuttosto che in ampiezza
- Gli archi sono esplorati a partire dal nodo v che
 - Sia stato scoperto più di recente
 - Abbia ancora archi (uscenti) non esplorati
- Quando gli archi uscenti di v terminano, si fa backtracking
 - Si esplorano eventuali altri archi uscenti dal nodo precedente a v.
- Il processo è ripetuto fin quando vi sono nodi da esplorare.

Depth first forests

- Se v è scoperto scorrendo la lista di adiacenza di u, p[v]=u
- Come per BFS si definisce un grafo dei predecessori G_p
- V_p=V
- E_p={(p[v],v) in E : v in V, p[v]≠NULL}
- G_p **non è** un albero (ma una foresta)
 - Depth first forest

Timestamps

- DFS marca temporalmente ogni vertice visitato
 - Ogni v ha due etichette
 - La prima -- d[v] -- registra quando il nodo è stato scoperto (bianco-> grigio)
 - La seconda f[v] registra quando la ricerca finisce di esaminare la lista di adiacenza di v (grigio-> nero)
 - Per ogni v, d[v]<f[v]</p>

DFS(G)		DFS-Visit(u)		
1.	1. for each u in V[G]		color[u]=grey; d[u]=time+1;	
2.	color[u]=white:	2.	for each v in Adj[u]	
3.	pred[u]=NULL;	3.	if (color[v]==white)	
4.	time = 0	4.	pred[v]=u;	
5.	for each u in V[G]	5.	DFS-Visit(v);	
6.	6. if (color[u]==white)		color[u]=black	
7.	DFS-Visit(u)	7.	f[u]=time+1;	

		ı —		
DFS(G)		DFS-Visit(u)		
1.	for each u in V[G]	1.	color[u]=grey; d[u]=time+1;	
2.	color[u]=white:	2.	for each v in Adj[u]	
3.	pred[u]=NULL;	3.	if (color[v]==white)	
4.	time = 0	4.	pred[v]=u;	
5.	for each u in V[G]	5.	DFS-Visit(v);	
6.	if (color[u]==white)	6.	color[u]=black	
7.	DFS-Visit(u)	7.	f[u]=time+1;	

Classificazione degli archi

Tree edges

- Archi nella depth-first forest G_p
- (u,v) è un tree-edge se v è scoperto (per le prima volta) quando si è esplorato l'arco (u,v)

Back edges

- (u,v) collega u ad un antenato v nel depth-first tree
 Forward edges
- (u,v) collega u ad un discendente v nel depth-first tree

Cross edges

• Tutti gli altri tipi di archi.

Topological Sort (Ordinamento topologico)

- DFS può essere usato per fare TS di un grafo diretto e aciclico
- Un grafo è aciclico se e solo se non ha back edges

Ordinamento Topologico

- Ordinamento lineare di tutti i vertici
- Se (u,v) è in G allora u precede v nell'ordinamento.
- Può essere visto come come un ordinamento dei vertici su una linea orizzontale.

11/16 undershorts 12/15 pants 6/7 belt (jacket) 3/4 **Esempio** watch 9/10

• (u,v) indica che u deve essere indossato prima di v

 I vertici sono ordinati in base al tempo di completamento (f)

Topological Sort

TOPOLOGICAL SORT(G)

- 1. DFS(G) // Permette di calcolare f[v] per ogni v
- 2. Non appena viene calcolato f[v], inserisci v (in testa) in L
- 3. return L
 - L lista concatenata
- Complessità: O(|E|+|V|)

Componenti Fortemente Connesse (Strongly Connected Components)

- DFS permette di decomporre un grafo (diretto) nelle sue componenti fortemente connesse.
- Utilizziamo G^T=(V,E^T) del grafo originario G
 E^T={(u,v): (v,u) in E}
- Tempo per creare G^T: O(|V|+|E|) (usando liste di adiacenza)
- G e G^T hanno le stesse componenti (fortemente) connesse.

Stronly Connected Components

SSC(G)

1.

DFS(G) // Permette di calcolare f[v] per ogni v

- 2. Calcola G^{T}
- 3. $DFS(G^T)$
- 4. return i vertici di ogni albero del passo 3
- Complessità: O(|E|+|V|)