
Grafi
•  Si dice grafo un insieme di nodi legati "a due a due" da archi

direzionati (o no)

•  I grafi sono strutture dati di fondamentale importanza in informatica
•  Vi sono centinaia di problemi computazionali ad essi legati
•  Qui parleremo di alcuni algoritmi elementari sui grafi

•  Soprattutto visita di grafi

G=(V,E)
•  V insieme dei nodi
•  E insieme degli archi (u,v)
•  Se G è direzionato l’arco (u,v) è
uscente da u ed entrante in v

•  Se (u,v) è in E, v è adiacente a u

B.4 Graphs 1169

1 2 3

4 5 6

(a)

1 2 3

4 5 6

(b)

1 2 3

6

(c)

Figure B.2 Directed and undirected graphs. (a) A directed graph G D .V; E/, where V D
f1; 2; 3; 4; 5; 6g and E D f.1; 2/; .2; 2/; .2; 4/; .2; 5/; .4; 1/; .4; 5/; .5; 4/; .6; 3/g. The edge .2; 2/
is a self-loop. (b) An undirected graph G D .V; E/, where V D f1; 2; 3; 4; 5; 6g and E D
f.1; 2/; .1; 5/; .2; 5/; .3; 6/g. The vertex 4 is isolated. (c) The subgraph of the graph in part (a)
induced by the vertex set f1; 2; 3; 6g.

u; ! 2 V and u ¤ !. By convention, we use the notation .u; !/ for an edge, rather
than the set notation fu; !g, and we consider .u; !/ and .!; u/ to be the same edge.
In an undirected graph, self-loops are forbidden, and so every edge consists of two
distinct vertices. Figure B.2(b) is a pictorial representation of an undirected graph
on the vertex set f1; 2; 3; 4; 5; 6g.

Many definitions for directed and undirected graphs are the same, although cer-
tain terms have slightly different meanings in the two contexts. If .u; !/ is an edge
in a directed graph G D .V; E/, we say that .u; !/ is incident from or leaves
vertex u and is incident to or enters vertex !. For example, the edges leaving ver-
tex 2 in Figure B.2(a) are .2; 2/, .2; 4/, and .2; 5/. The edges entering vertex 2 are
.1; 2/ and .2; 2/. If .u; !/ is an edge in an undirected graph G D .V; E/, we say
that .u; !/ is incident on vertices u and !. In Figure B.2(b), the edges incident on
vertex 2 are .1; 2/ and .2; 5/.

If .u; !/ is an edge in a graph G D .V; E/, we say that vertex ! is adjacent to
vertex u. When the graph is undirected, the adjacency relation is symmetric. When
the graph is directed, the adjacency relation is not necessarily symmetric. If ! is
adjacent to u in a directed graph, we sometimes write u ! !. In parts (a) and (b)
of Figure B.2, vertex 2 is adjacent to vertex 1, since the edge .1; 2/ belongs to both
graphs. Vertex 1 is not adjacent to vertex 2 in Figure B.2(a), since the edge .2; 1/
does not belong to the graph.

The degree of a vertex in an undirected graph is the number of edges incident on
it. For example, vertex 2 in Figure B.2(b) has degree 2. A vertex whose degree is 0,
such as vertex 4 in Figure B.2(b), is isolated. In a directed graph, the out-degree
of a vertex is the number of edges leaving it, and the in-degree of a vertex is the
number of edges entering it. The degree of a vertex in a directed graph is its in-

Grafi non direzionati

•  E consiste di coppie non ordinate di nodi
•  Self-loops non ammessi
•  In (u,v) u e v sono sia entranti che uscenti
•  Adiacenza è simmetrica

G=(V,E)
•  V insieme dei nodi
•  E insieme degli archi

B.4 Graphs 1169

1 2 3

4 5 6

(a)

1 2 3

4 5 6

(b)

1 2 3

6

(c)

Figure B.2 Directed and undirected graphs. (a) A directed graph G D .V; E/, where V D
f1; 2; 3; 4; 5; 6g and E D f.1; 2/; .2; 2/; .2; 4/; .2; 5/; .4; 1/; .4; 5/; .5; 4/; .6; 3/g. The edge .2; 2/
is a self-loop. (b) An undirected graph G D .V; E/, where V D f1; 2; 3; 4; 5; 6g and E D
f.1; 2/; .1; 5/; .2; 5/; .3; 6/g. The vertex 4 is isolated. (c) The subgraph of the graph in part (a)
induced by the vertex set f1; 2; 3; 6g.

u; ! 2 V and u ¤ !. By convention, we use the notation .u; !/ for an edge, rather
than the set notation fu; !g, and we consider .u; !/ and .!; u/ to be the same edge.
In an undirected graph, self-loops are forbidden, and so every edge consists of two
distinct vertices. Figure B.2(b) is a pictorial representation of an undirected graph
on the vertex set f1; 2; 3; 4; 5; 6g.

Many definitions for directed and undirected graphs are the same, although cer-
tain terms have slightly different meanings in the two contexts. If .u; !/ is an edge
in a directed graph G D .V; E/, we say that .u; !/ is incident from or leaves
vertex u and is incident to or enters vertex !. For example, the edges leaving ver-
tex 2 in Figure B.2(a) are .2; 2/, .2; 4/, and .2; 5/. The edges entering vertex 2 are
.1; 2/ and .2; 2/. If .u; !/ is an edge in an undirected graph G D .V; E/, we say
that .u; !/ is incident on vertices u and !. In Figure B.2(b), the edges incident on
vertex 2 are .1; 2/ and .2; 5/.

If .u; !/ is an edge in a graph G D .V; E/, we say that vertex ! is adjacent to
vertex u. When the graph is undirected, the adjacency relation is symmetric. When
the graph is directed, the adjacency relation is not necessarily symmetric. If ! is
adjacent to u in a directed graph, we sometimes write u ! !. In parts (a) and (b)
of Figure B.2, vertex 2 is adjacent to vertex 1, since the edge .1; 2/ belongs to both
graphs. Vertex 1 is not adjacent to vertex 2 in Figure B.2(a), since the edge .2; 1/
does not belong to the graph.

The degree of a vertex in an undirected graph is the number of edges incident on
it. For example, vertex 2 in Figure B.2(b) has degree 2. A vertex whose degree is 0,
such as vertex 4 in Figure B.2(b), is isolated. In a directed graph, the out-degree
of a vertex is the number of edges leaving it, and the in-degree of a vertex is the
number of edges entering it. The degree of a vertex in a directed graph is its in-

Grafi
Grado di un nodo (caso non direzionato)
•  Numero di archi entranti

Cammino (di lunghezza k) da u a v
•  Sequenza v0, …, vk tale che u=v0 e v=vk

Il cammino contiene i vertici v0,…,vk e gli archi (v0, v1),…, (vk-1, vk)

B.4 Graphs 1169

1 2 3

4 5 6

(a)

1 2 3

4 5 6

(b)

1 2 3

6

(c)

Figure B.2 Directed and undirected graphs. (a) A directed graph G D .V; E/, where V D
f1; 2; 3; 4; 5; 6g and E D f.1; 2/; .2; 2/; .2; 4/; .2; 5/; .4; 1/; .4; 5/; .5; 4/; .6; 3/g. The edge .2; 2/
is a self-loop. (b) An undirected graph G D .V; E/, where V D f1; 2; 3; 4; 5; 6g and E D
f.1; 2/; .1; 5/; .2; 5/; .3; 6/g. The vertex 4 is isolated. (c) The subgraph of the graph in part (a)
induced by the vertex set f1; 2; 3; 6g.

u; ! 2 V and u ¤ !. By convention, we use the notation .u; !/ for an edge, rather
than the set notation fu; !g, and we consider .u; !/ and .!; u/ to be the same edge.
In an undirected graph, self-loops are forbidden, and so every edge consists of two
distinct vertices. Figure B.2(b) is a pictorial representation of an undirected graph
on the vertex set f1; 2; 3; 4; 5; 6g.

Many definitions for directed and undirected graphs are the same, although cer-
tain terms have slightly different meanings in the two contexts. If .u; !/ is an edge
in a directed graph G D .V; E/, we say that .u; !/ is incident from or leaves
vertex u and is incident to or enters vertex !. For example, the edges leaving ver-
tex 2 in Figure B.2(a) are .2; 2/, .2; 4/, and .2; 5/. The edges entering vertex 2 are
.1; 2/ and .2; 2/. If .u; !/ is an edge in an undirected graph G D .V; E/, we say
that .u; !/ is incident on vertices u and !. In Figure B.2(b), the edges incident on
vertex 2 are .1; 2/ and .2; 5/.

If .u; !/ is an edge in a graph G D .V; E/, we say that vertex ! is adjacent to
vertex u. When the graph is undirected, the adjacency relation is symmetric. When
the graph is directed, the adjacency relation is not necessarily symmetric. If ! is
adjacent to u in a directed graph, we sometimes write u ! !. In parts (a) and (b)
of Figure B.2, vertex 2 is adjacent to vertex 1, since the edge .1; 2/ belongs to both
graphs. Vertex 1 is not adjacent to vertex 2 in Figure B.2(a), since the edge .2; 1/
does not belong to the graph.

The degree of a vertex in an undirected graph is the number of edges incident on
it. For example, vertex 2 in Figure B.2(b) has degree 2. A vertex whose degree is 0,
such as vertex 4 in Figure B.2(b), is isolated. In a directed graph, the out-degree
of a vertex is the number of edges leaving it, and the in-degree of a vertex is the
number of edges entering it. The degree of a vertex in a directed graph is its in-

Grado di un nodo (caso direzionato)
•  Numero di archi entranti + numero di archi uscenti

•  Un nodo v è raggiungibile da u se esiste un cammino da u a v

•  Il cammino è semplice se tutti i vertici in esso contenuti sono

distinti

Grafi
Cammino (di lunghezza k) da u a v
•  Sequenza v0, …, vk tale che u=v0 e v=vk

Sottocammino: Sequenza di vertici di un cammino es: vi,…,vj per
0 ≤ i ≤ j ≤ k

B.4 Graphs 1169

1 2 3

4 5 6

(a)

1 2 3

4 5 6

(b)

1 2 3

6

(c)

Figure B.2 Directed and undirected graphs. (a) A directed graph G D .V; E/, where V D
f1; 2; 3; 4; 5; 6g and E D f.1; 2/; .2; 2/; .2; 4/; .2; 5/; .4; 1/; .4; 5/; .5; 4/; .6; 3/g. The edge .2; 2/
is a self-loop. (b) An undirected graph G D .V; E/, where V D f1; 2; 3; 4; 5; 6g and E D
f.1; 2/; .1; 5/; .2; 5/; .3; 6/g. The vertex 4 is isolated. (c) The subgraph of the graph in part (a)
induced by the vertex set f1; 2; 3; 6g.

u; ! 2 V and u ¤ !. By convention, we use the notation .u; !/ for an edge, rather
than the set notation fu; !g, and we consider .u; !/ and .!; u/ to be the same edge.
In an undirected graph, self-loops are forbidden, and so every edge consists of two
distinct vertices. Figure B.2(b) is a pictorial representation of an undirected graph
on the vertex set f1; 2; 3; 4; 5; 6g.

Many definitions for directed and undirected graphs are the same, although cer-
tain terms have slightly different meanings in the two contexts. If .u; !/ is an edge
in a directed graph G D .V; E/, we say that .u; !/ is incident from or leaves
vertex u and is incident to or enters vertex !. For example, the edges leaving ver-
tex 2 in Figure B.2(a) are .2; 2/, .2; 4/, and .2; 5/. The edges entering vertex 2 are
.1; 2/ and .2; 2/. If .u; !/ is an edge in an undirected graph G D .V; E/, we say
that .u; !/ is incident on vertices u and !. In Figure B.2(b), the edges incident on
vertex 2 are .1; 2/ and .2; 5/.

If .u; !/ is an edge in a graph G D .V; E/, we say that vertex ! is adjacent to
vertex u. When the graph is undirected, the adjacency relation is symmetric. When
the graph is directed, the adjacency relation is not necessarily symmetric. If ! is
adjacent to u in a directed graph, we sometimes write u ! !. In parts (a) and (b)
of Figure B.2, vertex 2 is adjacent to vertex 1, since the edge .1; 2/ belongs to both
graphs. Vertex 1 is not adjacent to vertex 2 in Figure B.2(a), since the edge .2; 1/
does not belong to the graph.

The degree of a vertex in an undirected graph is the number of edges incident on
it. For example, vertex 2 in Figure B.2(b) has degree 2. A vertex whose degree is 0,
such as vertex 4 in Figure B.2(b), is isolated. In a directed graph, the out-degree
of a vertex is the number of edges leaving it, and the in-degree of a vertex is the
number of edges entering it. The degree of a vertex in a directed graph is its in-

Ciclo: Cammino v0, …, vk in cui v0=vk

•  Il ciclo è semplice se tutti i suoi nodi sono distinti.

Un grafo senza cicli è detto aciclico.

Grafi
•  Grafo (non direzionato) connesso: ogni coppia di vertici è unita

da un cammino.

•  Componenti connesse: classi di equivalenza determinate dalla

relazione “è raggiungibile da”

B.4 Graphs 1169

1 2 3

4 5 6

(a)

1 2 3

4 5 6

(b)

1 2 3

6

(c)

Figure B.2 Directed and undirected graphs. (a) A directed graph G D .V; E/, where V D
f1; 2; 3; 4; 5; 6g and E D f.1; 2/; .2; 2/; .2; 4/; .2; 5/; .4; 1/; .4; 5/; .5; 4/; .6; 3/g. The edge .2; 2/
is a self-loop. (b) An undirected graph G D .V; E/, where V D f1; 2; 3; 4; 5; 6g and E D
f.1; 2/; .1; 5/; .2; 5/; .3; 6/g. The vertex 4 is isolated. (c) The subgraph of the graph in part (a)
induced by the vertex set f1; 2; 3; 6g.

u; ! 2 V and u ¤ !. By convention, we use the notation .u; !/ for an edge, rather
than the set notation fu; !g, and we consider .u; !/ and .!; u/ to be the same edge.
In an undirected graph, self-loops are forbidden, and so every edge consists of two
distinct vertices. Figure B.2(b) is a pictorial representation of an undirected graph
on the vertex set f1; 2; 3; 4; 5; 6g.

Many definitions for directed and undirected graphs are the same, although cer-
tain terms have slightly different meanings in the two contexts. If .u; !/ is an edge
in a directed graph G D .V; E/, we say that .u; !/ is incident from or leaves
vertex u and is incident to or enters vertex !. For example, the edges leaving ver-
tex 2 in Figure B.2(a) are .2; 2/, .2; 4/, and .2; 5/. The edges entering vertex 2 are
.1; 2/ and .2; 2/. If .u; !/ is an edge in an undirected graph G D .V; E/, we say
that .u; !/ is incident on vertices u and !. In Figure B.2(b), the edges incident on
vertex 2 are .1; 2/ and .2; 5/.

If .u; !/ is an edge in a graph G D .V; E/, we say that vertex ! is adjacent to
vertex u. When the graph is undirected, the adjacency relation is symmetric. When
the graph is directed, the adjacency relation is not necessarily symmetric. If ! is
adjacent to u in a directed graph, we sometimes write u ! !. In parts (a) and (b)
of Figure B.2, vertex 2 is adjacent to vertex 1, since the edge .1; 2/ belongs to both
graphs. Vertex 1 is not adjacent to vertex 2 in Figure B.2(a), since the edge .2; 1/
does not belong to the graph.

The degree of a vertex in an undirected graph is the number of edges incident on
it. For example, vertex 2 in Figure B.2(b) has degree 2. A vertex whose degree is 0,
such as vertex 4 in Figure B.2(b), is isolated. In a directed graph, the out-degree
of a vertex is the number of edges leaving it, and the in-degree of a vertex is the
number of edges entering it. The degree of a vertex in a directed graph is its in-

Componenti connesse: {1,2,3}, {3,6}, {4}

Un grafo non direzionato è connesso se ha 1 componente
connessa

Grafi
•  Grafo (direzionato) fortemente connesso: per ogni coppia di

vertici (u,v) esiste un cammino che unisce u a v e v a u.

•  Componenti fortemente connesse: classi di equivalenza

determinate dalla relazione “sono mutualmente raggiungibili”

Componenti fortemente connesse:
{1,2,4,5}, {3}, {6}

B.4 Graphs 1169

1 2 3

4 5 6

(a)

1 2 3

4 5 6

(b)

1 2 3

6

(c)

Figure B.2 Directed and undirected graphs. (a) A directed graph G D .V; E/, where V D
f1; 2; 3; 4; 5; 6g and E D f.1; 2/; .2; 2/; .2; 4/; .2; 5/; .4; 1/; .4; 5/; .5; 4/; .6; 3/g. The edge .2; 2/
is a self-loop. (b) An undirected graph G D .V; E/, where V D f1; 2; 3; 4; 5; 6g and E D
f.1; 2/; .1; 5/; .2; 5/; .3; 6/g. The vertex 4 is isolated. (c) The subgraph of the graph in part (a)
induced by the vertex set f1; 2; 3; 6g.

u; ! 2 V and u ¤ !. By convention, we use the notation .u; !/ for an edge, rather
than the set notation fu; !g, and we consider .u; !/ and .!; u/ to be the same edge.
In an undirected graph, self-loops are forbidden, and so every edge consists of two
distinct vertices. Figure B.2(b) is a pictorial representation of an undirected graph
on the vertex set f1; 2; 3; 4; 5; 6g.

Many definitions for directed and undirected graphs are the same, although cer-
tain terms have slightly different meanings in the two contexts. If .u; !/ is an edge
in a directed graph G D .V; E/, we say that .u; !/ is incident from or leaves
vertex u and is incident to or enters vertex !. For example, the edges leaving ver-
tex 2 in Figure B.2(a) are .2; 2/, .2; 4/, and .2; 5/. The edges entering vertex 2 are
.1; 2/ and .2; 2/. If .u; !/ is an edge in an undirected graph G D .V; E/, we say
that .u; !/ is incident on vertices u and !. In Figure B.2(b), the edges incident on
vertex 2 are .1; 2/ and .2; 5/.

If .u; !/ is an edge in a graph G D .V; E/, we say that vertex ! is adjacent to
vertex u. When the graph is undirected, the adjacency relation is symmetric. When
the graph is directed, the adjacency relation is not necessarily symmetric. If ! is
adjacent to u in a directed graph, we sometimes write u ! !. In parts (a) and (b)
of Figure B.2, vertex 2 is adjacent to vertex 1, since the edge .1; 2/ belongs to both
graphs. Vertex 1 is not adjacent to vertex 2 in Figure B.2(a), since the edge .2; 1/
does not belong to the graph.

The degree of a vertex in an undirected graph is the number of edges incident on
it. For example, vertex 2 in Figure B.2(b) has degree 2. A vertex whose degree is 0,
such as vertex 4 in Figure B.2(b), is isolated. In a directed graph, the out-degree
of a vertex is the number of edges leaving it, and the in-degree of a vertex is the
number of edges entering it. The degree of a vertex in a directed graph is its in-

Grafi
•  G’=(V’,E’) sottografo di G=(V,E) se V’ sottoinsieme di V e E’

sottoinsieme di E

•  Un grafo (non direzionato) è completo se ogni coppia di vertici è
adiacente

Rappresentare	un	grafo	

Due		modi	fondamentali:		
•  Liste	di	adiacenza	

– U8le	sopra9u9o	per	rappresentare	grafi	sparsi	
(con	pochi	archi)		

– Richiede	O(max(|V|,|E|))=O(|V|+|E|)	spazio		

•  Matrici	di	adiacenza	
– Richiede	O(|V|2)	spazio		
	
	

Liste	di	adiacenza	–	Grafi	non	
direziona8	

•  Array	di	|V|	liste	(una	per	ogni	ver8ce)	
•  Adj[u]	con8ene	(puntatori	a)	tuP	i	ver8ci	v	per	i	
quali	(u,v)	è	in	E	

•  La	somma	delle	lunghezze	di	tu9e	le	liste	è	2|E|	590 Chapter 22 Elementary Graph Algorithms

1 2

3

45

1
2
3
4
5

2 5
1
2
2
4 1 2

5 3
4

45 3
1 0 0 1
0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0

0
1
0
0
1

1 2 3 4 5
1
2
3
4
5

(a) (b) (c)

Figure 22.1 Two representations of an undirected graph. (a)An undirected graph G with 5 vertices
and 7 edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation
of G.

1 2

54

1
2
3
4
5

2 4
5
6
2
4
6

5

1 0 1 0
0 0 0 1
0 0 0 1
1 0 0 0
0 0 1 0

0
0
0
0
0

1 2 3 4 5
1
2
3
4
5

(a) (b) (c)

3

6 6

6

6 0 0 0 0 0 1
0
0
1
0
0

Figure 22.2 Two representations of a directed graph. (a) A directed graph G with 6 vertices and 8
edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

shortest-paths algorithms presented in Chapter 25 assume that their input graphs
are represented by adjacency matrices.

The adjacency-list representation of a graph G D .V; E/ consists of an ar-
ray Adj of jV j lists, one for each vertex in V . For each u 2 V , the adjacency list
AdjŒu! contains all the vertices " such that there is an edge .u; "/ 2 E. That is,
AdjŒu! consists of all the vertices adjacent to u in G. (Alternatively, it may contain
pointers to these vertices.) Since the adjacency lists represent the edges of a graph,
in pseudocode we treat the array Adj as an attribute of the graph, just as we treat
the edge set E. In pseudocode, therefore, we will see notation such as G:AdjŒu!.
Figure 22.1(b) is an adjacency-list representation of the undirected graph in Fig-
ure 22.1(a). Similarly, Figure 22.2(b) is an adjacency-list representation of the
directed graph in Figure 22.2(a).

If G is a directed graph, the sum of the lengths of all the adjacency lists is jEj,
since an edge of the form .u; "/ is represented by having " appear in AdjŒu!. If G is

Liste	di	adiacenza	–	Grafi	
direziona8	

•  Array	di	|V|	liste	(una	per	ogni	ver8ce)	
•  Adj[u]	con8ene	(puntatori	a)	tuP	i	ver8ci	v	
per	i	quali	(u,v)	è	in	E	

•  In	tal	caso,	la	somma	delle	lunghezze	di	tu9e	
le	liste	è	|E|	

590 Chapter 22 Elementary Graph Algorithms

1 2

3

45

1
2
3
4
5

2 5
1
2
2
4 1 2

5 3
4

45 3
1 0 0 1
0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0

0
1
0
0
1

1 2 3 4 5
1
2
3
4
5

(a) (b) (c)

Figure 22.1 Two representations of an undirected graph. (a)An undirected graph G with 5 vertices
and 7 edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation
of G.

1 2

54

1
2
3
4
5

2 4
5
6
2
4
6

5

1 0 1 0
0 0 0 1
0 0 0 1
1 0 0 0
0 0 1 0

0
0
0
0
0

1 2 3 4 5
1
2
3
4
5

(a) (b) (c)

3

6 6

6

6 0 0 0 0 0 1
0
0
1
0
0

Figure 22.2 Two representations of a directed graph. (a) A directed graph G with 6 vertices and 8
edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

shortest-paths algorithms presented in Chapter 25 assume that their input graphs
are represented by adjacency matrices.

The adjacency-list representation of a graph G D .V; E/ consists of an ar-
ray Adj of jV j lists, one for each vertex in V . For each u 2 V , the adjacency list
AdjŒu! contains all the vertices " such that there is an edge .u; "/ 2 E. That is,
AdjŒu! consists of all the vertices adjacent to u in G. (Alternatively, it may contain
pointers to these vertices.) Since the adjacency lists represent the edges of a graph,
in pseudocode we treat the array Adj as an attribute of the graph, just as we treat
the edge set E. In pseudocode, therefore, we will see notation such as G:AdjŒu!.
Figure 22.1(b) is an adjacency-list representation of the undirected graph in Fig-
ure 22.1(a). Similarly, Figure 22.2(b) is an adjacency-list representation of the
directed graph in Figure 22.2(a).

If G is a directed graph, the sum of the lengths of all the adjacency lists is jEj,
since an edge of the form .u; "/ is represented by having " appear in AdjŒu!. If G is

Matrici	di	adiacenza	

•  A=[aij]		
•  aij=1	se	(i,j)	è	un	arco	in	E	(0	altrimen8)		

590 Chapter 22 Elementary Graph Algorithms

1 2

3

45

1
2
3
4
5

2 5
1
2
2
4 1 2

5 3
4

45 3
1 0 0 1
0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0

0
1
0
0
1

1 2 3 4 5
1
2
3
4
5

(a) (b) (c)

Figure 22.1 Two representations of an undirected graph. (a)An undirected graph G with 5 vertices
and 7 edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation
of G.

1 2

54

1
2
3
4
5

2 4
5
6
2
4
6

5

1 0 1 0
0 0 0 1
0 0 0 1
1 0 0 0
0 0 1 0

0
0
0
0
0

1 2 3 4 5
1
2
3
4
5

(a) (b) (c)

3

6 6

6

6 0 0 0 0 0 1
0
0
1
0
0

Figure 22.2 Two representations of a directed graph. (a) A directed graph G with 6 vertices and 8
edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

shortest-paths algorithms presented in Chapter 25 assume that their input graphs
are represented by adjacency matrices.

The adjacency-list representation of a graph G D .V; E/ consists of an ar-
ray Adj of jV j lists, one for each vertex in V . For each u 2 V , the adjacency list
AdjŒu! contains all the vertices " such that there is an edge .u; "/ 2 E. That is,
AdjŒu! consists of all the vertices adjacent to u in G. (Alternatively, it may contain
pointers to these vertices.) Since the adjacency lists represent the edges of a graph,
in pseudocode we treat the array Adj as an attribute of the graph, just as we treat
the edge set E. In pseudocode, therefore, we will see notation such as G:AdjŒu!.
Figure 22.1(b) is an adjacency-list representation of the undirected graph in Fig-
ure 22.1(a). Similarly, Figure 22.2(b) is an adjacency-list representation of the
directed graph in Figure 22.2(a).

If G is a directed graph, the sum of the lengths of all the adjacency lists is jEj,
since an edge of the form .u; "/ is represented by having " appear in AdjŒu!. If G is

590 Chapter 22 Elementary Graph Algorithms

1 2

3

45

1
2
3
4
5

2 5
1
2
2
4 1 2

5 3
4

45 3
1 0 0 1
0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0

0
1
0
0
1

1 2 3 4 5
1
2
3
4
5

(a) (b) (c)

Figure 22.1 Two representations of an undirected graph. (a)An undirected graph G with 5 vertices
and 7 edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation
of G.

1 2

54

1
2
3
4
5

2 4
5
6
2
4
6

5

1 0 1 0
0 0 0 1
0 0 0 1
1 0 0 0
0 0 1 0

0
0
0
0
0

1 2 3 4 5
1
2
3
4
5

(a) (b) (c)

3

6 6

6

6 0 0 0 0 0 1
0
0
1
0
0

Figure 22.2 Two representations of a directed graph. (a) A directed graph G with 6 vertices and 8
edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

shortest-paths algorithms presented in Chapter 25 assume that their input graphs
are represented by adjacency matrices.

The adjacency-list representation of a graph G D .V; E/ consists of an ar-
ray Adj of jV j lists, one for each vertex in V . For each u 2 V , the adjacency list
AdjŒu! contains all the vertices " such that there is an edge .u; "/ 2 E. That is,
AdjŒu! consists of all the vertices adjacent to u in G. (Alternatively, it may contain
pointers to these vertices.) Since the adjacency lists represent the edges of a graph,
in pseudocode we treat the array Adj as an attribute of the graph, just as we treat
the edge set E. In pseudocode, therefore, we will see notation such as G:AdjŒu!.
Figure 22.1(b) is an adjacency-list representation of the undirected graph in Fig-
ure 22.1(a). Similarly, Figure 22.2(b) is an adjacency-list representation of the
directed graph in Figure 22.2(a).

If G is a directed graph, the sum of the lengths of all the adjacency lists is jEj,
since an edge of the form .u; "/ is represented by having " appear in AdjŒu!. If G is

Ricerca	in	ampiezza		
(Breadth-First-Search)	

•  Dato	un	ver8ce	s,	“esploriamo”	il	grafo	per	
scoprire	ogni	ver8ce	v	raggiungibile	da	s.	
– Calcola	la	distanza	di	ogni	v	da	s.	
– L’algoritmo	(implicitamente)	produce	un	breadth-
first-tree	(BFT)	

•  Il	campo	predecessore	fa	riferimento	proprio	a	tale	
albero.		

–  Il	cammino	da	s	a	v	in	BFT	rappresenta	il	cammino	
più	breve.			

•  Supporremo	una	rappresentazione	tramite	
liste	di	adiacenza.		

Ricerca	in	ampiezza	--	Idee		
	•  Inizialmente	ogni	nodo	è	colorato	bianco	

– Poi	i	nodi	diventeranno	grigi	o	neri.		
•  Un	nodo	è	scoperto	quando	è	visitato	la	prima	
volta.		
– Diventa	non-bianco	
– Nodi	grigi:	possono	essere	adiacen8	(anche)	a	nodi	
bianchi.	

•  Rappresentano	la	fron8era	tra	ciò	che	è	già	stato	
scoperto	e	ciò	che	non	lo	è	ancora.		

– Nodi	neri:	possono	essere	adiacen8	solo	a	nodi	non	
bianchi.		

Ricerca in ampiezza
BFS(G,s)
1.  for each vertex u in V[G] – {s}
2.  color[u]=white;
3.  d[u]=MAX;
4.  pred [u]=NULL;
5.  color[s]=gray;
6.  d[s]=0; pred[u]=NULL;
7.  Q.Enqueue(s);
8.  while (Q.NotEmpty())
9.  u=Q.Dequeue();
10.  for each v in Adj[u]
11.  if (color[v]==white)
12.  color[v]=gray;
13.  d[v]=d[u] + 1; pred[v]=u;
14.  Q.Enqueue(v);
15.  color[u]= black;

596 Chapter 22 Elementary Graph Algorithms

r s t u

v w x y

0∞ ∞ ∞

∞∞∞∞
s
0

Q(a)

t u

v w x y

01 ∞ ∞

∞∞∞ 1
w
1

Q(b) r
1

t u

v w x y

01 2 ∞

∞2∞ 1
Q(c) r

1

t u

v w x y

01 ∞

∞
Q(d)

(e) (f)

(g) (h)

Q(i)

r s

r s r s

t
2

x
2

2

212
t
2

x
2

v
2

t u

v w x y

01

∞
Q

r s
2

212
x
2

v
2

u
3

3
t u

v w x y

01

3
Q

r s
2

212
v
2

u
3

3
y
3

t u

v w x y

01

3
Q

r s
2

21
u
3

3
y
32

t u

v w x y

01

3
Q

r s
2

21

3
y
32

t u

v w x y

01
r s

2

21

3

2 3
;

Figure 22.3 The operation of BFS on an undirected graph. Tree edges are shown shaded as they
are produced by BFS. The value of u:d appears within each vertex u. The queue Q is shown at the
beginning of each iteration of the while loop of lines 10–18. Vertex distances appear below vertices
in the queue.

Although we won’t use this loop invariant to prove correctness, it is easy to see
that it holds prior to the first iteration and that each iteration of the loop maintains
the invariant. Prior to the first iteration, the only gray vertex, and the only vertex
in Q, is the source vertex s. Line 11 determines the gray vertex u at the head of
the queue Q and removes it from Q. The for loop of lines 12–17 considers each
vertex ! in the adjacency list of u. If ! is white, then it has not yet been discovered,
and the procedure discovers it by executing lines 14–17. The procedure paints
vertex ! gray, sets its distance !:d to u:dC1, records u as its parent !:" , and places
it at the tail of the queue Q. Once the procedure has examined all the vertices on u’s

596 Chapter 22 Elementary Graph Algorithms

r s t u

v w x y

0∞ ∞ ∞

∞∞∞∞
s
0

Q(a)

t u

v w x y

01 ∞ ∞

∞∞∞ 1
w
1

Q(b) r
1

t u

v w x y

01 2 ∞

∞2∞ 1
Q(c) r

1

t u

v w x y

01 ∞

∞
Q(d)

(e) (f)

(g) (h)

Q(i)

r s

r s r s

t
2

x
2

2

212
t
2

x
2

v
2

t u

v w x y

01

∞
Q

r s
2

212
x
2

v
2

u
3

3
t u

v w x y

01

3
Q

r s
2

212
v
2

u
3

3
y
3

t u

v w x y

01

3
Q

r s
2

21
u
3

3
y
32

t u

v w x y

01

3
Q

r s
2

21

3
y
32

t u

v w x y

01
r s

2

21

3

2 3
;

Figure 22.3 The operation of BFS on an undirected graph. Tree edges are shown shaded as they
are produced by BFS. The value of u:d appears within each vertex u. The queue Q is shown at the
beginning of each iteration of the while loop of lines 10–18. Vertex distances appear below vertices
in the queue.

Although we won’t use this loop invariant to prove correctness, it is easy to see
that it holds prior to the first iteration and that each iteration of the loop maintains
the invariant. Prior to the first iteration, the only gray vertex, and the only vertex
in Q, is the source vertex s. Line 11 determines the gray vertex u at the head of
the queue Q and removes it from Q. The for loop of lines 12–17 considers each
vertex ! in the adjacency list of u. If ! is white, then it has not yet been discovered,
and the procedure discovers it by executing lines 14–17. The procedure paints
vertex ! gray, sets its distance !:d to u:dC1, records u as its parent !:" , and places
it at the tail of the queue Q. Once the procedure has examined all the vertices on u’s

596 Chapter 22 Elementary Graph Algorithms

r s t u

v w x y

0∞ ∞ ∞

∞∞∞∞
s
0

Q(a)

t u

v w x y

01 ∞ ∞

∞∞∞ 1
w
1

Q(b) r
1

t u

v w x y

01 2 ∞

∞2∞ 1
Q(c) r

1

t u

v w x y

01 ∞

∞
Q(d)

(e) (f)

(g) (h)

Q(i)

r s

r s r s

t
2

x
2

2

212
t
2

x
2

v
2

t u

v w x y

01

∞
Q

r s
2

212
x
2

v
2

u
3

3
t u

v w x y

01

3
Q

r s
2

212
v
2

u
3

3
y
3

t u

v w x y

01

3
Q

r s
2

21
u
3

3
y
32

t u

v w x y

01

3
Q

r s
2

21

3
y
32

t u

v w x y

01
r s

2

21

3

2 3
;

Figure 22.3 The operation of BFS on an undirected graph. Tree edges are shown shaded as they
are produced by BFS. The value of u:d appears within each vertex u. The queue Q is shown at the
beginning of each iteration of the while loop of lines 10–18. Vertex distances appear below vertices
in the queue.

Although we won’t use this loop invariant to prove correctness, it is easy to see
that it holds prior to the first iteration and that each iteration of the loop maintains
the invariant. Prior to the first iteration, the only gray vertex, and the only vertex
in Q, is the source vertex s. Line 11 determines the gray vertex u at the head of
the queue Q and removes it from Q. The for loop of lines 12–17 considers each
vertex ! in the adjacency list of u. If ! is white, then it has not yet been discovered,
and the procedure discovers it by executing lines 14–17. The procedure paints
vertex ! gray, sets its distance !:d to u:dC1, records u as its parent !:" , and places
it at the tail of the queue Q. Once the procedure has examined all the vertices on u’s

596 Chapter 22 Elementary Graph Algorithms

r s t u

v w x y

0∞ ∞ ∞

∞∞∞∞
s
0

Q(a)

t u

v w x y

01 ∞ ∞

∞∞∞ 1
w
1

Q(b) r
1

t u

v w x y

01 2 ∞

∞2∞ 1
Q(c) r

1

t u

v w x y

01 ∞

∞
Q(d)

(e) (f)

(g) (h)

Q(i)

r s

r s r s

t
2

x
2

2

212
t
2

x
2

v
2

t u

v w x y

01

∞
Q

r s
2

212
x
2

v
2

u
3

3
t u

v w x y

01

3
Q

r s
2

212
v
2

u
3

3
y
3

t u

v w x y

01

3
Q

r s
2

21
u
3

3
y
32

t u

v w x y

01

3
Q

r s
2

21

3
y
32

t u

v w x y

01
r s

2

21

3

2 3
;

Figure 22.3 The operation of BFS on an undirected graph. Tree edges are shown shaded as they
are produced by BFS. The value of u:d appears within each vertex u. The queue Q is shown at the
beginning of each iteration of the while loop of lines 10–18. Vertex distances appear below vertices
in the queue.

Although we won’t use this loop invariant to prove correctness, it is easy to see
that it holds prior to the first iteration and that each iteration of the loop maintains
the invariant. Prior to the first iteration, the only gray vertex, and the only vertex
in Q, is the source vertex s. Line 11 determines the gray vertex u at the head of
the queue Q and removes it from Q. The for loop of lines 12–17 considers each
vertex ! in the adjacency list of u. If ! is white, then it has not yet been discovered,
and the procedure discovers it by executing lines 14–17. The procedure paints
vertex ! gray, sets its distance !:d to u:dC1, records u as its parent !:" , and places
it at the tail of the queue Q. Once the procedure has examined all the vertices on u’s

Ricerca in ampiezza
BFS(G,s)
1.  for each vertex u in V[G] – {s}
2.  color[u]=white;
3.  d[u]=MAX;
4.  pred [u]=NULL;
5.  color[s]=gray;
6.  d[s]=0; pred[u]=NULL;
7.  Q.Enqueue(s);
8.  while (Q.NotEmpty())
9.  u=Q.Dequeue();
10.  for each v in Adj[u]
11.  if (color[v]==white)
12.  color[v]=gray;
13.  d[v]=d[u] + 1; pred[v]=u;
14.  Q.Enqueue(v);
15.  color[u]= black;

596 Chapter 22 Elementary Graph Algorithms

r s t u

v w x y

0∞ ∞ ∞

∞∞∞∞
s
0

Q(a)

t u

v w x y

01 ∞ ∞

∞∞∞ 1
w
1

Q(b) r
1

t u

v w x y

01 2 ∞

∞2∞ 1
Q(c) r

1

t u

v w x y

01 ∞

∞
Q(d)

(e) (f)

(g) (h)

Q(i)

r s

r s r s

t
2

x
2

2

212
t
2

x
2

v
2

t u

v w x y

01

∞
Q

r s
2

212
x
2

v
2

u
3

3
t u

v w x y

01

3
Q

r s
2

212
v
2

u
3

3
y
3

t u

v w x y

01

3
Q

r s
2

21
u
3

3
y
32

t u

v w x y

01

3
Q

r s
2

21

3
y
32

t u

v w x y

01
r s

2

21

3

2 3
;

Figure 22.3 The operation of BFS on an undirected graph. Tree edges are shown shaded as they
are produced by BFS. The value of u:d appears within each vertex u. The queue Q is shown at the
beginning of each iteration of the while loop of lines 10–18. Vertex distances appear below vertices
in the queue.

Although we won’t use this loop invariant to prove correctness, it is easy to see
that it holds prior to the first iteration and that each iteration of the loop maintains
the invariant. Prior to the first iteration, the only gray vertex, and the only vertex
in Q, is the source vertex s. Line 11 determines the gray vertex u at the head of
the queue Q and removes it from Q. The for loop of lines 12–17 considers each
vertex ! in the adjacency list of u. If ! is white, then it has not yet been discovered,
and the procedure discovers it by executing lines 14–17. The procedure paints
vertex ! gray, sets its distance !:d to u:dC1, records u as its parent !:" , and places
it at the tail of the queue Q. Once the procedure has examined all the vertices on u’s

596 Chapter 22 Elementary Graph Algorithms

r s t u

v w x y

0∞ ∞ ∞

∞∞∞∞
s
0

Q(a)

t u

v w x y

01 ∞ ∞

∞∞∞ 1
w
1

Q(b) r
1

t u

v w x y

01 2 ∞

∞2∞ 1
Q(c) r

1

t u

v w x y

01 ∞

∞
Q(d)

(e) (f)

(g) (h)

Q(i)

r s

r s r s

t
2

x
2

2

212
t
2

x
2

v
2

t u

v w x y

01

∞
Q

r s
2

212
x
2

v
2

u
3

3
t u

v w x y

01

3
Q

r s
2

212
v
2

u
3

3
y
3

t u

v w x y

01

3
Q

r s
2

21
u
3

3
y
32

t u

v w x y

01

3
Q

r s
2

21

3
y
32

t u

v w x y

01
r s

2

21

3

2 3
;

Figure 22.3 The operation of BFS on an undirected graph. Tree edges are shown shaded as they
are produced by BFS. The value of u:d appears within each vertex u. The queue Q is shown at the
beginning of each iteration of the while loop of lines 10–18. Vertex distances appear below vertices
in the queue.

Although we won’t use this loop invariant to prove correctness, it is easy to see
that it holds prior to the first iteration and that each iteration of the loop maintains
the invariant. Prior to the first iteration, the only gray vertex, and the only vertex
in Q, is the source vertex s. Line 11 determines the gray vertex u at the head of
the queue Q and removes it from Q. The for loop of lines 12–17 considers each
vertex ! in the adjacency list of u. If ! is white, then it has not yet been discovered,
and the procedure discovers it by executing lines 14–17. The procedure paints
vertex ! gray, sets its distance !:d to u:dC1, records u as its parent !:" , and places
it at the tail of the queue Q. Once the procedure has examined all the vertices on u’s

596 Chapter 22 Elementary Graph Algorithms

r s t u

v w x y

0∞ ∞ ∞

∞∞∞∞
s
0

Q(a)

t u

v w x y

01 ∞ ∞

∞∞∞ 1
w
1

Q(b) r
1

t u

v w x y

01 2 ∞

∞2∞ 1
Q(c) r

1

t u

v w x y

01 ∞

∞
Q(d)

(e) (f)

(g) (h)

Q(i)

r s

r s r s

t
2

x
2

2

212
t
2

x
2

v
2

t u

v w x y

01

∞
Q

r s
2

212
x
2

v
2

u
3

3
t u

v w x y

01

3
Q

r s
2

212
v
2

u
3

3
y
3

t u

v w x y

01

3
Q

r s
2

21
u
3

3
y
32

t u

v w x y

01

3
Q

r s
2

21

3
y
32

t u

v w x y

01
r s

2

21

3

2 3
;

Figure 22.3 The operation of BFS on an undirected graph. Tree edges are shown shaded as they
are produced by BFS. The value of u:d appears within each vertex u. The queue Q is shown at the
beginning of each iteration of the while loop of lines 10–18. Vertex distances appear below vertices
in the queue.

Although we won’t use this loop invariant to prove correctness, it is easy to see
that it holds prior to the first iteration and that each iteration of the loop maintains
the invariant. Prior to the first iteration, the only gray vertex, and the only vertex
in Q, is the source vertex s. Line 11 determines the gray vertex u at the head of
the queue Q and removes it from Q. The for loop of lines 12–17 considers each
vertex ! in the adjacency list of u. If ! is white, then it has not yet been discovered,
and the procedure discovers it by executing lines 14–17. The procedure paints
vertex ! gray, sets its distance !:d to u:dC1, records u as its parent !:" , and places
it at the tail of the queue Q. Once the procedure has examined all the vertices on u’s

596 Chapter 22 Elementary Graph Algorithms

r s t u

v w x y

0∞ ∞ ∞

∞∞∞∞
s
0

Q(a)

t u

v w x y

01 ∞ ∞

∞∞∞ 1
w
1

Q(b) r
1

t u

v w x y

01 2 ∞

∞2∞ 1
Q(c) r

1

t u

v w x y

01 ∞

∞
Q(d)

(e) (f)

(g) (h)

Q(i)

r s

r s r s

t
2

x
2

2

212
t
2

x
2

v
2

t u

v w x y

01

∞
Q

r s
2

212
x
2

v
2

u
3

3
t u

v w x y

01

3
Q

r s
2

212
v
2

u
3

3
y
3

t u

v w x y

01

3
Q

r s
2

21
u
3

3
y
32

t u

v w x y

01

3
Q

r s
2

21

3
y
32

t u

v w x y

01
r s

2

21

3

2 3
;

Figure 22.3 The operation of BFS on an undirected graph. Tree edges are shown shaded as they
are produced by BFS. The value of u:d appears within each vertex u. The queue Q is shown at the
beginning of each iteration of the while loop of lines 10–18. Vertex distances appear below vertices
in the queue.

Although we won’t use this loop invariant to prove correctness, it is easy to see
that it holds prior to the first iteration and that each iteration of the loop maintains
the invariant. Prior to the first iteration, the only gray vertex, and the only vertex
in Q, is the source vertex s. Line 11 determines the gray vertex u at the head of
the queue Q and removes it from Q. The for loop of lines 12–17 considers each
vertex ! in the adjacency list of u. If ! is white, then it has not yet been discovered,
and the procedure discovers it by executing lines 14–17. The procedure paints
vertex ! gray, sets its distance !:d to u:dC1, records u as its parent !:" , and places
it at the tail of the queue Q. Once the procedure has examined all the vertices on u’s

596 Chapter 22 Elementary Graph Algorithms

r s t u

v w x y

0∞ ∞ ∞

∞∞∞∞
s
0

Q(a)

t u

v w x y

01 ∞ ∞

∞∞∞ 1
w
1

Q(b) r
1

t u

v w x y

01 2 ∞

∞2∞ 1
Q(c) r

1

t u

v w x y

01 ∞

∞
Q(d)

(e) (f)

(g) (h)

Q(i)

r s

r s r s

t
2

x
2

2

212
t
2

x
2

v
2

t u

v w x y

01

∞
Q

r s
2

212
x
2

v
2

u
3

3
t u

v w x y

01

3
Q

r s
2

212
v
2

u
3

3
y
3

t u

v w x y

01

3
Q

r s
2

21
u
3

3
y
32

t u

v w x y

01

3
Q

r s
2

21

3
y
32

t u

v w x y

01
r s

2

21

3

2 3
;

Figure 22.3 The operation of BFS on an undirected graph. Tree edges are shown shaded as they
are produced by BFS. The value of u:d appears within each vertex u. The queue Q is shown at the
beginning of each iteration of the while loop of lines 10–18. Vertex distances appear below vertices
in the queue.

Although we won’t use this loop invariant to prove correctness, it is easy to see
that it holds prior to the first iteration and that each iteration of the loop maintains
the invariant. Prior to the first iteration, the only gray vertex, and the only vertex
in Q, is the source vertex s. Line 11 determines the gray vertex u at the head of
the queue Q and removes it from Q. The for loop of lines 12–17 considers each
vertex ! in the adjacency list of u. If ! is white, then it has not yet been discovered,
and the procedure discovers it by executing lines 14–17. The procedure paints
vertex ! gray, sets its distance !:d to u:dC1, records u as its parent !:" , and places
it at the tail of the queue Q. Once the procedure has examined all the vertices on u’s

Ricerca in ampiezza
BFS(G,s)
1.  for each vertex u in V[G] – {s}
2.  color[u]=white;
3.  d[u]=MAX;
4.  pred[u]=NULL;
5.  color[s]=gray;
6.  d[s]=0; pred[u]=NULL;
7.  Q.Enqueue(s);
8.  while (Q.NotEmpty())
9.  u=Q.Dequeue();
10.  for each v in Adj[u]
11.  if (color[v]==white)
12.  color[v]=gray;
13.  d[v]=d[u] + 1; pred[v]=u;
14.  Q.Enqueue(v);
15.  color[u]= black;

Complessità: O(n+m)

Breadth-first	Trees	

•  La	procedura	BFS(G,s)	costruisce	un	albero	
(grafo	dei	predecessori	Gp)		
– Ad	ogni	nodo	è	associato	un	predecessore	

•  Vp={v	in	V	:	p[v]≠NULL}	
•  Ep={(p[v],v)	in	E	:	v	in	Vp,	v≠s}	
•  Gp	è	un	albero	in	cui		

– C’è	un	unico	cammino	da	s	a	v	(in	Vp)	che	è	anche	il	
cammino	più	breve	

– Gli	archi	in	Ep	sono	chiama8	tree-edges.	

	
	

Print-Path

Print-Path(G,s,v)
1.  if (v==s) print s
2.  else if pred[v]==NULL
3.  print “No path from s to v”
4.  else Print-Path(G,s,pred[v])
5.  print v

•  Supponiamo di aver già eseguito BFS(G,s)

Ricerca	in	Profondità:	DFS	
•  Il	grafo	viene	visitato	in	profondità	piu9osto	che	in	
ampiezza		

•  Gli	archi	sono	esplora8	a	par8re	dal	nodo	v	che		
–  Sia	stato	scoperto	più	di	recente		
– Abbia	ancora	archi	(uscen8)	non	esplora8				

•  Quando	gli	archi	uscen8	di	v	terminano,	si	fa	
backtracking		
–  Si	esplorano	eventuali	altri	archi	uscen8	dal	nodo	
precedente	a	v.	

•  Il	processo	è	ripetuto	fin	quando	vi	sono	nodi	da	
esplorare.		

Depth	first	forests	

•  Se	v	è	scoperto	scorrendo	la	lista	di	adiacenza	di	
u,	p[v]=u	

•  Come	per	BFS	si	definisce	un	grafo	dei	
predecessori	Gp		

•  Vp=V	
•  Ep={(p[v],v)	in	E	:	v	in	V,	p[v]≠NULL}	
•  Gp	non	è	un	albero	(ma	una	foresta)	

– Depth	first	forest	

Timestamps	

•  DFS	marca	temporalmente	ogni	ver8ce	visitato	
– Ogni	v	ha	due	e8che9e	
– La	prima	--	d[v]	--	registra	quando	il	nodo	è	stato	
scoperto	(bianco->	grigio)		

– La	seconda	–	f[v]	–	registra	quando	la	ricerca	finisce	di	
esaminare	la	lista	di	adiacenza	di	v	(grigio->	nero)	

– Per	ogni	v,	d[v]<f[v]	

DFS	

DFS(G)
1.  for each u in V[G]
2.  color[u]=white:
3.  pred[u]=NULL;
4.  time = 0
5.  for each u in V[G]
6.  if (color[u]==white)
7.  DFS-Visit(u)

DFS-Visit(u)
1.  color[u]=grey; d[u]=time+1;
2.  for each v in Adj[u]
3.  if (color[v]==white)
4.  pred[v]=u;
5.  DFS-Visit(v);
6.  color[u]=black
7.  f[u]=time+1;

22.3 Depth-first search 605

u v w

x y z

1/ 1/ 2/ 1/ 2/

3/

1/ 2/

3/4/

1/ 2/

3/4/

B

1/ 2/

3/

B

4/5

1/ 2/
B

4/5 3/6

1/
B

4/5 3/6

2/7

1/
B

4/5 3/6

2/7
F B

4/5 3/6

2/7
F
1/8

B

4/5 3/6

2/7
F
1/8 9/

B

4/5 3/6

2/7
F
1/8 9/

C

B

4/5 3/6

2/7
F

1/8 9/
C B

4/5 3/6

2/7
F

1/8 9/
C

B
B

4/5 3/6

2/7
F

1/8 9/
C

B
10/11

B

4/5 3/6

2/7
F

1/8
C

B
10/11

9/12

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z
(m) (n) (o) (p)

(i) (j) (k) (l)

(e) (f) (g) (h)

(a) (b) (c) (d)

10/10/

Figure 22.4 The progress of the depth-first-search algorithm DFS on a directed graph. As edges
are explored by the algorithm, they are shown as either shaded (if they are tree edges) or dashed
(otherwise). Nontree edges are labeled B, C, or F according to whether they are back, cross, or
forward edges. Timestamps within vertices indicate discovery time/finishing times.

the root of a new tree in the depth-first forest. When DFS returns, every vertex u
has been assigned a discovery time u:d and a finishing time u: f .

In each call DFS-VISIT.G; u/, vertex u is initially white. Line 1 increments
the global variable time, line 2 records the new value of time as the discovery
time u:d, and line 3 paints u gray. Lines 4–7 examine each vertex ! adjacent to u
and recursively visit ! if it is white. As each vertex ! 2 AdjŒu" is considered in
line 4, we say that edge .u; !/ is explored by the depth-first search. Finally, after
every edge leaving u has been explored, lines 8–10 paint u black, increment time,
and record the finishing time in u: f .

Note that the results of depth-first search may depend upon the order in which
line 5 of DFS examines the vertices and upon the order in which line 4 of DFS-
VISIT visits the neighbors of a vertex. These different visitation orders tend not

DFS	

DFS(G)
1.  for each u in V[G]
2.  color[u]=white:
3.  pred[u]=NULL;
4.  time = 0
5.  for each u in V[G]
6.  if (color[u]==white)
7.  DFS-Visit(u)

DFS-Visit(u)
1.  color[u]=grey; d[u]=time+1;
2.  for each v in Adj[u]
3.  if (color[v]==white)
4.  pred[v]=u;
5.  DFS-Visit(v);
6.  color[u]=black
7.  f[u]=time+1;

22.3 Depth-first search 605

u v w

x y z

1/ 1/ 2/ 1/ 2/

3/

1/ 2/

3/4/

1/ 2/

3/4/

B

1/ 2/

3/

B

4/5

1/ 2/
B

4/5 3/6

1/
B

4/5 3/6

2/7

1/
B

4/5 3/6

2/7
F B

4/5 3/6

2/7
F
1/8

B

4/5 3/6

2/7
F
1/8 9/

B

4/5 3/6

2/7
F
1/8 9/

C

B

4/5 3/6

2/7
F

1/8 9/
C B

4/5 3/6

2/7
F

1/8 9/
C

B
B

4/5 3/6

2/7
F

1/8 9/
C

B
10/11

B

4/5 3/6

2/7
F

1/8
C

B
10/11

9/12

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z
(m) (n) (o) (p)

(i) (j) (k) (l)

(e) (f) (g) (h)

(a) (b) (c) (d)

10/10/

Figure 22.4 The progress of the depth-first-search algorithm DFS on a directed graph. As edges
are explored by the algorithm, they are shown as either shaded (if they are tree edges) or dashed
(otherwise). Nontree edges are labeled B, C, or F according to whether they are back, cross, or
forward edges. Timestamps within vertices indicate discovery time/finishing times.

the root of a new tree in the depth-first forest. When DFS returns, every vertex u
has been assigned a discovery time u:d and a finishing time u: f .

In each call DFS-VISIT.G; u/, vertex u is initially white. Line 1 increments
the global variable time, line 2 records the new value of time as the discovery
time u:d, and line 3 paints u gray. Lines 4–7 examine each vertex ! adjacent to u
and recursively visit ! if it is white. As each vertex ! 2 AdjŒu" is considered in
line 4, we say that edge .u; !/ is explored by the depth-first search. Finally, after
every edge leaving u has been explored, lines 8–10 paint u black, increment time,
and record the finishing time in u: f .

Note that the results of depth-first search may depend upon the order in which
line 5 of DFS examines the vertices and upon the order in which line 4 of DFS-
VISIT visits the neighbors of a vertex. These different visitation orders tend not

DFS	

DFS(G)
1.  for each u in V[G]
2.  color[u]=white:
3.  pred[u]=NULL;
4.  time = 0
5.  for each u in V[G]
6.  if (color[u]==white)
7.  DFS-Visit(u)

DFS-Visit(u)
1.  color[u]=grey; d[u]=time+1;
2.  for each v in Adj[u]
3.  if (color[v]==white)
4.  pred[v]=u;
5.  DFS-Visit(v);
6.  color[u]=black
7.  f[u]=time+1;

22.3 Depth-first search 605

u v w

x y z

1/ 1/ 2/ 1/ 2/

3/

1/ 2/

3/4/

1/ 2/

3/4/

B

1/ 2/

3/

B

4/5

1/ 2/
B

4/5 3/6

1/
B

4/5 3/6

2/7

1/
B

4/5 3/6

2/7
F B

4/5 3/6

2/7
F
1/8

B

4/5 3/6

2/7
F
1/8 9/

B

4/5 3/6

2/7
F
1/8 9/

C

B

4/5 3/6

2/7
F

1/8 9/
C B

4/5 3/6

2/7
F

1/8 9/
C

B
B

4/5 3/6

2/7
F

1/8 9/
C

B
10/11

B

4/5 3/6

2/7
F

1/8
C

B
10/11

9/12

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z
(m) (n) (o) (p)

(i) (j) (k) (l)

(e) (f) (g) (h)

(a) (b) (c) (d)

10/10/

Figure 22.4 The progress of the depth-first-search algorithm DFS on a directed graph. As edges
are explored by the algorithm, they are shown as either shaded (if they are tree edges) or dashed
(otherwise). Nontree edges are labeled B, C, or F according to whether they are back, cross, or
forward edges. Timestamps within vertices indicate discovery time/finishing times.

the root of a new tree in the depth-first forest. When DFS returns, every vertex u
has been assigned a discovery time u:d and a finishing time u: f .

In each call DFS-VISIT.G; u/, vertex u is initially white. Line 1 increments
the global variable time, line 2 records the new value of time as the discovery
time u:d, and line 3 paints u gray. Lines 4–7 examine each vertex ! adjacent to u
and recursively visit ! if it is white. As each vertex ! 2 AdjŒu" is considered in
line 4, we say that edge .u; !/ is explored by the depth-first search. Finally, after
every edge leaving u has been explored, lines 8–10 paint u black, increment time,
and record the finishing time in u: f .

Note that the results of depth-first search may depend upon the order in which
line 5 of DFS examines the vertices and upon the order in which line 4 of DFS-
VISIT visits the neighbors of a vertex. These different visitation orders tend not

DFS	

DFS(G)
1.  for each u in V[G]
2.  color[u]=white:
3.  pred[u]=NULL;
4.  time = 0
5.  for each u in V[G]
6.  if (color[u]==white)
7.  DFS-Visit(u)

DFS-Visit(u)
1.  color[u]=grey; d[u]=time+1;
2.  for each v in Adj[u]
3.  if (color[v]==white)
4.  pred[v]=u;
5.  DFS-Visit(v);
6.  color[u]=black
7.  f[u]=time+1;

22.3 Depth-first search 605

u v w

x y z

1/ 1/ 2/ 1/ 2/

3/

1/ 2/

3/4/

1/ 2/

3/4/

B

1/ 2/

3/

B

4/5

1/ 2/
B

4/5 3/6

1/
B

4/5 3/6

2/7

1/
B

4/5 3/6

2/7
F B

4/5 3/6

2/7
F
1/8

B

4/5 3/6

2/7
F
1/8 9/

B

4/5 3/6

2/7
F
1/8 9/

C

B

4/5 3/6

2/7
F

1/8 9/
C B

4/5 3/6

2/7
F

1/8 9/
C

B
B

4/5 3/6

2/7
F

1/8 9/
C

B
10/11

B

4/5 3/6

2/7
F

1/8
C

B
10/11

9/12

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z

u v w

x y z
(m) (n) (o) (p)

(i) (j) (k) (l)

(e) (f) (g) (h)

(a) (b) (c) (d)

10/10/

Figure 22.4 The progress of the depth-first-search algorithm DFS on a directed graph. As edges
are explored by the algorithm, they are shown as either shaded (if they are tree edges) or dashed
(otherwise). Nontree edges are labeled B, C, or F according to whether they are back, cross, or
forward edges. Timestamps within vertices indicate discovery time/finishing times.

the root of a new tree in the depth-first forest. When DFS returns, every vertex u
has been assigned a discovery time u:d and a finishing time u: f .

In each call DFS-VISIT.G; u/, vertex u is initially white. Line 1 increments
the global variable time, line 2 records the new value of time as the discovery
time u:d, and line 3 paints u gray. Lines 4–7 examine each vertex ! adjacent to u
and recursively visit ! if it is white. As each vertex ! 2 AdjŒu" is considered in
line 4, we say that edge .u; !/ is explored by the depth-first search. Finally, after
every edge leaving u has been explored, lines 8–10 paint u black, increment time,
and record the finishing time in u: f .

Note that the results of depth-first search may depend upon the order in which
line 5 of DFS examines the vertices and upon the order in which line 4 of DFS-
VISIT visits the neighbors of a vertex. These different visitation orders tend not

Classificazione	degli	archi	

Tree	edges			
•  Archi	nella	depth-first	forest	Gp	
•  (u,v)	è	un	tree-edge	se	v	è	scoperto	(per	le	prima	volta)	
quando	si	è	esplorato	l’arco	(u,v)		

Back	edges			
•  (u,v)	collega	u	ad	un	antenato	v	nel	depth-first	tree	
Forward	edges	
•  (u,v)	collega	u	ad	un	discendente	v	nel	depth-first	tree	
Cross	edges			
•  TuP	gli	altri	8pi	di	archi.		

Topological	Sort		
(Ordinamento	topologico)		

•  DFS	può	essere	usato	per	fare	TS	di	un	grafo	
dire9o	e	aciclico	

•  Un	grafo	è	aciclico	se	e	solo	se	non	ha	back	edges	
Ordinamento	Topologico		
•  Ordinamento	lineare	di	tuP	i	ver8ci		
•  Se	(u,v)	è	in	G	allora	u	precede	v	
nell’ordinamento.	

•  Può	essere	visto	come	come	un	ordinamento	dei	
ver8ci	su	una	linea	orizzontale.			

Esempio		

•  (u,v)	indica	che	u	deve	essere	indossato	prima	di	v	

22.4 Topological sort 613

11/16

12/15

6/7
1/8

2/5

3/4

17/18

13/14
9/10

17/18 11/16 12/15 13/14 9/10 1/8 6/7 2/5 3/4

(a)

(b)

undershorts

pants

belt
shirt

tie

jacket

socks

shoes
watch

socks undershorts pants shoes watch shirt belt tie jacket

Figure 22.7 (a) Professor Bumstead topologically sorts his clothing when getting dressed. Each
directed edge .u; !/ means that garment u must be put on before garment !. The discovery and
finishing times from a depth-first search are shown next to each vertex. (b) The same graph shown
topologically sorted, with its vertices arranged from left to right in order of decreasing finishing time.
All directed edges go from left to right.

pants). A directed edge .u; !/ in the dag of Figure 22.7(a) indicates that garment u
must be donned before garment !. A topological sort of this dag therefore gives an
order for getting dressed. Figure 22.7(b) shows the topologically sorted dag as an
ordering of vertices along a horizontal line such that all directed edges go from left
to right.

The following simple algorithm topologically sorts a dag:

TOPOLOGICAL-SORT.G/

1 call DFS.G/ to compute finishing times !: f for each vertex !
2 as each vertex is finished, insert it onto the front of a linked list
3 return the linked list of vertices

Figure 22.7(b) shows how the topologically sorted vertices appear in reverse order
of their finishing times.

We can perform a topological sort in time ‚.V C E/, since depth-first search
takes ‚.V CE/ time and it takes O.1/ time to insert each of the jV j vertices onto
the front of the linked list.

We prove the correctness of this algorithm using the following key lemma char-
acterizing directed acyclic graphs.

22.4 Topological sort 613

11/16

12/15

6/7
1/8

2/5

3/4

17/18

13/14
9/10

17/18 11/16 12/15 13/14 9/10 1/8 6/7 2/5 3/4

(a)

(b)

undershorts

pants

belt
shirt

tie

jacket

socks

shoes
watch

socks undershorts pants shoes watch shirt belt tie jacket

Figure 22.7 (a) Professor Bumstead topologically sorts his clothing when getting dressed. Each
directed edge .u; !/ means that garment u must be put on before garment !. The discovery and
finishing times from a depth-first search are shown next to each vertex. (b) The same graph shown
topologically sorted, with its vertices arranged from left to right in order of decreasing finishing time.
All directed edges go from left to right.

pants). A directed edge .u; !/ in the dag of Figure 22.7(a) indicates that garment u
must be donned before garment !. A topological sort of this dag therefore gives an
order for getting dressed. Figure 22.7(b) shows the topologically sorted dag as an
ordering of vertices along a horizontal line such that all directed edges go from left
to right.

The following simple algorithm topologically sorts a dag:

TOPOLOGICAL-SORT.G/

1 call DFS.G/ to compute finishing times !: f for each vertex !
2 as each vertex is finished, insert it onto the front of a linked list
3 return the linked list of vertices

Figure 22.7(b) shows how the topologically sorted vertices appear in reverse order
of their finishing times.

We can perform a topological sort in time ‚.V C E/, since depth-first search
takes ‚.V CE/ time and it takes O.1/ time to insert each of the jV j vertices onto
the front of the linked list.

We prove the correctness of this algorithm using the following key lemma char-
acterizing directed acyclic graphs.

•  I	ver8ci	sono	ordina8	in	base	al	tempo	di	
completamento	(f)	

Topological Sort
TOPOLOGICAL SORT(G)
1.  DFS(G) // Permette di calcolare f[v] per ogni v
2.  Non appena viene calcolato f[v], inserisci v (in testa) in L
3.  return L

•  L lista concatenata
•  Complessità: O(|E|+|V|)

Componen8	Fortemente	Connesse	
(Strongly	Connected	Components)	

•  DFS	perme9e	di	decomporre	un	grafo	
(dire9o)	nelle	sue	componen8	fortemente	
connesse.		

•  U8lizziamo	GT=(V,ET)	del	grafo	originario	G	
ET={(u,v):	(v,u)	in	E}	

•  Tempo	per	creare	GT:	O(|V|+|E|)	(usando	
liste	di	adiacenza)	

•  G	e	GT	hanno	le	stesse	componen8	
(fortemente)	connesse.	

Stronly Connected Components
SSC(G)
1.  DFS(G) // Permette di calcolare f[v] per ogni v
2.  Calcola GT
3.  DFS(GT)
4.  return i vertici di ogni albero del passo 3

•  Complessità: O(|E|+|V|)

