Grafi

- Si dice grafo un insieme di nodi legati "a due a due" da archi direzionati (o no)
- I grafi sono strutture dati di fondamentale importanza in informatica
- Vi sono centinaia di problemi computazionali ad essi legati
- Qui parleremo di alcuni algoritmi elementari sui grafi
- Soprattutto visita di grafi
$\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- V insieme dei nodi
- E insieme degli archi (u,v)
- Se G è direzionato l'arco (u,v) è uscente da u ed entrante in v
- $S e(u, v)$ è in E , v è adiacente a u

Grafi non direzionati

$\mathrm{G}=(\mathrm{V}, \mathrm{E})$

- V insieme dei nodi
- E insieme degli archi
- E consiste di coppie non ordinate di nodi
- Self-loops non ammessi
- In (u,v) u e v sono sia entranti che uscenti
- Adiacenza è simmetrica

Grafi

Grado di un nodo (caso non direzionato)

- Numero di archi entranti

Grado di un nodo (caso direzionato)

- Numero di archi entranti + numero di archi uscenti

Cammino (di lunghezza k) da u a v

- Sequenza v_{0}, \ldots, v_{k} tale che $u=v_{0} e v=v_{k}$

Il cammino contiene i vertici $\mathrm{v}_{0}, \ldots, \mathrm{v}_{\mathrm{k}}$ e gli archi $\left(\mathrm{v}_{0}, \mathrm{v}_{1}\right), \ldots,\left(\mathrm{v}_{\mathrm{k}-1}, \mathrm{v}_{\mathrm{k}}\right)$

- Un nodo v è raggiungibile da u se esiste un cammino da u a v
- Il cammino è semplice se tutti i vertici in esso contenuti sono distinti

Grafi

Cammino (di lunghezza k) da u av

- Sequenza $\mathrm{v}_{0}, \ldots, \mathrm{v}_{\mathrm{k}}$ tale che $\mathrm{u}=\mathrm{v}_{0}$ e $\mathrm{v}=\mathrm{v}_{\mathrm{k}}$

Sottocammino: Sequenza di vertici di un cammino es: $\mathrm{v}_{\mathrm{i}}, \ldots, \mathrm{v}_{\mathrm{j}}$ per $0 \leq \mathrm{i} \leq \mathrm{j} \leq \mathrm{k}$

Ciclo: Cammino $\mathrm{v}_{0}, \ldots, \mathrm{v}_{\mathrm{k}}$ in cui $\mathrm{v}_{0}=\mathrm{v}_{\mathrm{k}}$

- Il ciclo è semplice se tutti i suoi nodi sono distinti.

Un grafo senza cicli è detto aciclico.

Grafi

- Grafo (non direzionato) connesso: ogni coppia di vertici è unita da un cammino.
- Componenti connesse: classi di equivalenza determinate dalla relazione "è raggiungibile da"

Componenti connesse: $\{1,2,3\},\{3,6\},\{4\}$

Un grafo non direzionato è connesso se ha 1 componente connessa

Grafi

- Grafo (direzionato) fortemente connesso: per ogni coppia di vertici (u, v) esiste un cammino che unisce u a ve vau.
- Componenti fortemente connesse: classi di equivalenza determinate dalla relazione "sono mutualmente raggiungibili"

Componenti fortemente connesse: $\{1,2,4,5\},\{3\},\{6\}$

Grafi

- $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ sottografo di $G=(V, E)$ se V^{\prime} sottoinsieme di V e E^{\prime} sottoinsieme di E
- Un grafo (non direzionato) è completo se ogni coppia di vertici è adiacente

Rappresentare un grafo

Due modi fondamentali:

- Liste di adiacenza
- Utile soprattutto per rappresentare grafi sparsi (con pochi archi)
- Richiede $\mathrm{O}(\max (|\mathrm{V}|,|\mathrm{E}|))=\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$ spazio
- Matrici di adiacenza
- Richiede O(|V| ${ }^{2}$) spazio

Liste di adiacenza - Grafi non direzionati

- Array di |V| liste (una per ogni vertice)
- Adj[u] contiene (puntatori a) tutti i vertici v per i quali (u, v) è in E
- La somma delle lunghezze di tutte le liste è $2|\mathrm{E}|$

(a)

(b)

Liste di adiacenza - Grafi

direzionati

- Array di |V| liste (una per ogni vertice)
- Adj[u] contiene (puntatori a) tutti i vertici v per i quali (u, v) è in E
- In tal caso, la somma delle lunghezze di tutte le liste è $|E|$

(a)

(b)

Matrici di adiacenza

- $A=\left[a_{i j}\right]$
- $a_{i j}=1$ se (i,j) è un arco in E (0 altrimenti)

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	0	0	0	0	1

Ricerca in ampiezza (Breadth-First-Search)

- Dato un vertice s, "esploriamo" il grafo per scoprire ogni vertice v raggiungibile da s.
- Calcola la distanza di ogni v da s.
- L'algoritmo (implicitamente) produce un breadth-first-tree (BFT)
- Il campo predecessore fa riferimento proprio a tale albero.
- Il cammino da savin BFT rappresenta il cammino più breve.
- Supporremo una rappresentazione tramite liste di adiacenza.

Ricerca in ampiezza -- Idee

- Inizialmente ogni nodo è colorato bianco
- Poi i nodi diventeranno grigi o neri.
- Un nodo è scoperto quando è visitato la prima volta.
- Diventa non-bianco
- Nodi grigi: possono essere adiacenti (anche) a nodi bianchi.
- Rappresentano la frontiera tra ciò che è già stato scoperto e ciò che non lo è ancora.
- Nodi neri: possono essere adiacenti solo a nodi non bianchi.

Ricerca in ampiezza

BFS(G,s)

1. for each vertex u in $V[G]-\{s\}$
2. color $[\mathrm{u}]=$ white;
3. $\mathrm{d}[\mathrm{u}]=\mathrm{MAX}$;
4. pred $[\mathrm{u}]=\mathrm{NULL}$;
5. color[s]=gray;
6. $\mathrm{d}[\mathrm{s}]=0$; $\operatorname{pred}[\mathrm{u}]=\mathrm{NULL}$;
7. Q.Enqueue(s);

8. while (Q.NotEmpty())
9. $\quad u=Q$. Dequeue();
10. for each v in Adj[u]
11. if (color $[\mathrm{v}]==$ white)
12. color[v]=gray;
13. $\mathrm{d}[\mathrm{v}]=\mathrm{d}[\mathrm{u}]+1 ; \operatorname{pred}[\mathrm{v}]=\mathrm{u}$;
14.

Q.Enqueue(v);
15. color $[\mathrm{u}]=$ black;

Q| t | x | v |
| :--- | :--- | :--- |
| 2 | 2 | 2 |

Ricerca in ampiezza

BFS(G,s)

1. for each vertex u in $V[G]-\{s\}$
2. color $[\mathrm{u}]=$ white;
3. $\mathrm{d}[\mathrm{u}]=\mathrm{MAX}$;
4.
5. color[s]=gray;
6. $\mathrm{d}[\mathrm{s}]=0 ; \operatorname{pred}[\mathrm{u}]=\mathrm{NULL}$;
7. Q.Enqueue(s);
8. while (Q.NotEmpty())
9. u=Q.Dequeue();
10. for each v in $\operatorname{Adj}[u]$
11. if (color[v]==white)
12. color[v]=gray;
13.
14.
15. color[u]= black;

Ricerca in ampiezza

BFS(G,s)

1. for each vertex u in $V[G]-\{s\}$
2. color[u]=white;
3. $\mathrm{d}[\mathrm{u}]=\mathrm{MAX}$;
4. $\operatorname{pred}[\mathrm{u}]=\mathrm{NULL}$;
5. color[s]=gray;
6. $\mathrm{d}[\mathrm{s}]=0 ; \operatorname{pred}[\mathrm{u}]=\mathrm{NULL}$;
7. Q.Enqueue(s);
8. while (Q.NotEmpty())
9. $\quad u=$ Q.Dequeue();

Complessità: $\mathrm{O}(\mathrm{n}+\mathrm{m})$
10. for each v in Adj[u]
if (color $[\mathrm{v}]==$ white)
color[v]=gray;

$$
\mathrm{d}[\mathrm{v}]=\mathrm{d}[\mathrm{u}]+1 ; \operatorname{pred}[\mathrm{v}]=\mathrm{u} ;
$$

Q.Enqueue(v);
15. $\operatorname{color}[\mathrm{u}]=$ black;

Breadth-first Trees

- La procedura BFS(G,s) costruisce un albero (grafo dei predecessori G_{p})
- Ad ogni nodo è associato un predecessore
- $\mathrm{V}_{\mathrm{p}}=\{\mathrm{v}$ in $\mathrm{V}: \mathrm{p}[\mathrm{v}] \neq \mathrm{NULL}\}$
- $E_{p}=\left\{(p[v], v)\right.$ in $E: v$ in $\left.V_{p}, v \neq s\right\}$
- G_{p} è un albero in cui
- C'è un unico cammino da s a v (in V_{p}) che è anche il cammino più breve
- Gli archi in E_{p} sono chiamati tree-edges.

Print-Path

- Supponiamo di aver già eseguito $B F S(G, s)$

Print-Path(G,s,v)

1. if ($\mathrm{v}==\mathrm{s}$) print s
2. else if pred $[\mathrm{v}]==\mathrm{NULL}$
3. print "No path from s to v"
4. else Print-Path(G,s,pred[v])
5. print v

Ricerca in Profondità: DFS

- Il grafo viene visitato in profondità piuttosto che in ampiezza
- Gli archi sono esplorati a partire dal nodo v che
- Sia stato scoperto più di recente
- Abbia ancora archi (uscenti) non esplorati
- Quando gli archi uscenti di v terminano, si fa backtracking
- Si esplorano eventuali altri archi uscenti dal nodo precedente a v.
- Il processo è ripetuto fin quando vi sono nodi da esplorare.

Depth first forests

- Se v è scoperto scorrendo la lista di adiacenza di $u, p[v]=u$
- Come per BFS si definisce un grafo dei predecessori G_{p}
- $V_{p}=V$
- $E_{p}=\{(p[v], v)$ in $E: v$ in $V, p[v] \neq N U L L\}$
- G_{p} non è un albero (ma una foresta)
- Depth first forest

Timestamps

- DFS marca temporalmente ogni vertice visitato
- Ogni v ha due etichette
- La prima -- d[v] -- registra quando il nodo è stato scoperto (bianco-> grigio)
- La seconda - $\mathrm{f}[\mathrm{v}]$ - registra quando la ricerca finisce di esaminare la lista di adiacenza di v (grigio-> nero)
- Per ogni v, d[v]<f[v]

DFS

DFS(G)

1. for each u in $V[G]$
2. \quad color $[u]=$ white:
3. $\quad \operatorname{pred}[u]=$ NULL;
4. time $=0$
5. for each u in V[G]
6. if (color $[\mathrm{u}]==$ white)

7 . DFS-Visit(u)

DFS-Visit(u)

1. color $[\mathrm{u}]=$ grey; $\mathrm{d}[\mathrm{u}]=$ time +1 ;
2. for each v in $\operatorname{Adj}[u]$
3. if (color[v]==white)
4. $\operatorname{pred}[\mathrm{v}]=\mathrm{u}$;
5. DFS-Visit(v);
6. color $[\mathrm{u}]=$ black
7. $\mathrm{f}[\mathrm{u}]=$ time +1 ;

(a)

(b)

(c)

(d)

DFS

DFS(G)

1. for each u in $V[G]$
2. color $[u]=$ white:
3. $\quad \operatorname{pred}[u]=$ NULL;
4. time $=0$
5. for each u in $V[G]$
6. if (color $[\mathrm{u}]==$ white)

7 . DFS-Visit(u)

DFS-Visit(u)

1. color $[\mathrm{u}]=$ grey; $\mathrm{d}[\mathrm{u}]=$ time +1 ;
2. for each v in $\operatorname{Adj}[u]$
3. if (color[v]==white)
4. $\operatorname{pred}[\mathrm{v}]=\mathrm{u}$;
5. DFS-Visit(v);
6. color $[\mathrm{u}]=$ black
7. $\mathrm{f}[\mathrm{u}]=$ time +1 ;

(e)

(f)

(g)

(h)

DFS

DFS(G)

1. for each u in $V[G]$
2. \quad color $[u]=$ white:
3. $\quad \operatorname{pred}[u]=$ NULL;
4. time $=0$
5. for each u in $V[G]$
6. if (color $[\mathrm{u}]==$ white)

7 . DFS-Visit(u)

DFS-Visit(u)

1. color $[\mathrm{u}]=$ grey; $\mathrm{d}[\mathrm{u}]=$ time +1 ;
2. for each v in $\operatorname{Adj}[u]$
3. if (color[v]==white)
4. $\operatorname{pred}[\mathrm{v}]=\mathrm{u}$;
5. DFS-Visit(v);
6. color $[\mathrm{u}]=$ black
7. $\mathrm{f}[\mathrm{u}]=$ time +1 ;

(i)

(j)

(k)

(1)

DFS

DFS(G)

1. for each u in $V[G]$
2. \quad color $[u]=$ white:
3. $\quad \operatorname{pred}[u]=$ NULL;
4. time $=0$
5. for each u in $V[G]$
6. if (color $[\mathrm{u}]==$ white)

7 . DFS-Visit(u)

DFS-Visit(u)

1. color $[\mathrm{u}]=$ grey; $\mathrm{d}[\mathrm{u}]=$ time +1 ;
2. for each v in $\operatorname{Adj}[u]$
3. if (color $[v]==$ white)
4. $\operatorname{pred}[\mathrm{v}]=\mathrm{u}$;
5. DFS-Visit(v);
6. color $[\mathrm{u}]=$ black
7. $\mathrm{f}[\mathrm{u}]=$ time +1 ;

(m)

(n)

(o)

(p)

Classificazione degli archi

Tree edges

- Archi nella depth-first forest G_{p}
- (u, v) è un tree-edge se v è scoperto (per le prima volta) quando si è esplorato l'arco (u, v)
Back edges
- (u, v) collega u ad un antenato v nel depth-first tree

Forward edges

- (u, v) collega u ad un discendente v nel depth-first tree Cross edges
- Tutti gli altri tipi di archi.

Topological Sort (Ordinamento topologico)

- DFS può essere usato per fare TS di un grafo diretto e aciclico
- Un grafo è aciclico se e solo se non ha back edges

Ordinamento Topologico

- Ordinamento lineare di tutti i vertici
- Se (u,v) è in G allora u precede v nell'ordinamento.
- Può essere visto come come un ordinamento dei vertici su una linea orizzontale.

Esempio

- (u, v) indica che u deve essere indossato prima di v

- I vertici sono ordinati in base al tempo di completamento (f)

Topological Sort

TOPOLOGICAL SORT(G)

1. DFS(G) // Permette di calcolare f[v] per ogni v
2. Non appena viene calcolato $\mathrm{f}[\mathrm{v}]$, inserisci v (in testa) in L
3. return L

- L lista concatenata
- Complessità: $\mathrm{O}(|\mathrm{E}|+|\mathrm{V}|)$

Componenti Fortemente Connesse (Strongly Connected Components)

- DFS permette di decomporre un grafo (diretto) nelle sue componenti fortemente connesse.
- Utilizziamo $\mathrm{G}^{\top}=\left(\mathrm{V}, \mathrm{E}^{\top}\right)$ del grafo originario G

$$
E^{\top}=\{(u, v):(v, u) \text { in } E\}
$$

- Tempo per creare $\mathrm{G}^{\mathrm{T}}: \mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$ (usando liste di adiacenza)
- G e G^{\top} hanno le stesse componenti (fortemente) connesse.

Stronly Connected Components

SSC(G)

1. DFS(G) // Permette di calcolare f[v] per ogni v
2. Calcola G^{T}
3. $\operatorname{DFS}\left(\mathrm{G}^{\mathrm{T}}\right)$
4. return i vertici di ogni albero del passo 3

- Complessità: $\mathrm{O}(|\mathrm{E}|+|\mathrm{V}|)$

